Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ming-Jin Xie, ${ }^{\text {a }}$ Kong Mun Lo ${ }^{\text {b }}$ and Seik Weng $\mathbf{N g}^{{ }^{\text {b }}}{ }^{*}$

${ }^{\mathrm{a}}$ School Chemistry, Yunnan University, Kunming 650092, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.049$
$w R$ factor $=0.173$
Data-to-parameter ratio $=15.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography All rights reserved

Bis(di-2-pyridylmethanediol- $\kappa^{3} N, N^{\prime}, O$)manganese(II) bis(acetate) tetrahydrate

The Mn atom in the title compound, $\left[\mathrm{Mn}\left(\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2}\right]$ $\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$, which lies on a centre of inversion, displays a tetragonally distorted octahedral coordination. The compound is isostructural with the analogous copper complex [Reinoso, Vitoria, San Felices, Lezama \& Gutiérrez-Zorrilla (2003). Acta Cryst. E59, m548-m550].

Comment

Di-2-pyridyl ketone, when reacted with metal salts, is sometimes oxidized to di-2-pyridylmethanediol, which chelates to the metal. The diol binds through three donor sites to the metal in the purple copper diacetate adduct, which exists as a tetrahydrate (Reinoso et al., 2003). The title manganese analogue, (I), is isostructural with this complex, and the geometry of the metal centre is again tetragonally distorted octahedral (Fig. 1). The cation interacts with the anion through a pair of hydrogen bonds; the cations, anions and uncoordinated water molecules are linked by hydrogen bonds (Table 2) into a three-dimensional network.

Experimental

The title compound was synthesized according to the literature procedure used for the isostructural copper compound (Reinoso et al., 2003), but with manganese(II) acetate in place of copper(II) acetate. Crystals were grown from ethanol as solvent.

Crystal data

$\left[\mathrm{Mn}\left(\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2}\right]-$
$\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}-4 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=694.51$
Monoclinic, $P 2_{1} / n$
$a=8.6266(6) \AA$
$b=7.8941(5) \AA$
$c=23.137(2) \AA$
$\beta=98.018(1)^{\circ}$

Received 20 September 2006
Accepted 21 September 2006

Data collection

Bruker APEXII area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.766, T_{\text {max }}=0.896$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.049$
$w R\left(F^{2}\right)=0.173$
$S=1.08$
3439 reflections
222 parameters
H atoms treated by a mixture of independent and constrained refinement

13846 measured reflections 3439 independent reflections 2798 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.022$
$\theta_{\text {max }}=27.2^{\circ}$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.1162 P)^{2}\right. \\
& +0.3929 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \text { 。 } \\
& \Delta \rho_{\text {max }}=1.30 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.37 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.013 \text { (3) }
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Mn} 1-\mathrm{N} 1$	$2.025(2)$	$\mathrm{Mn} 1-\mathrm{O} 1$	$2.409(2)$
$\mathrm{Mn} 1-\mathrm{N} 2$	$2.002(3)$		
$\mathrm{N} 1-\mathrm{Mn} 1-\mathrm{N} 2$	$88.03(9)$	$\mathrm{N} 1-\mathrm{Mn} 1-\mathrm{O} 1^{\mathrm{i}}$	$106.06(8)$
$\mathrm{N} 1-\mathrm{Mn} 1-\mathrm{N} 2^{\mathrm{i}}$	$91.97(9)$	$\mathrm{N} 2-\mathrm{Mn} 1-\mathrm{O} 1$	$75.67(7)$
$\mathrm{N} 1-\mathrm{Mn} 1-\mathrm{O} 1$	$73.94(8)$	$\mathrm{N} 2-\mathrm{Mn} 1-\mathrm{O} 1^{\mathrm{i}}$	$104.33(8)$

Symmetry code: (i) $-x+1,-y+1,-z+1$.

Table 2
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 \mathrm{o} \cdots \mathrm{O} 3$	0.87 (1)	1.73 (1)	2.595 (3)	179 (4)
$\mathrm{O} 2-\mathrm{H} 2 \mathrm{o} \cdots \mathrm{O} 4$	0.86 (1)	1.76 (2)	2.605 (3)	166 (5)
O1w-H1w1 . ${ }^{\text {O }}$	0.85 (1)	1.92 (2)	2.757 (4)	168 (6)
O1w-H1w2 . ${ }^{\text {O }}$ 2w	0.85 (1)	1.91 (1)	2.758 (5)	172 (6)
$\mathrm{O} 2 \mathrm{w}-\mathrm{H} 2 \mathrm{w} 1 \cdots \mathrm{O} 4{ }^{\text {ii }}$	0.86 (1)	2.01 (3)	2.788 (4)	150 (5)
$\mathrm{O} 2 \mathrm{w}-\mathrm{H} 2 \mathrm{w} 2 \cdots \mathrm{O} 1 \mathrm{w}^{\text {iii }}$	0.85 (1)	1.96 (4)	2.737 (5)	150 (7)

Carbon-bound H atoms were placed in calculated positions ($\mathrm{C}-\mathrm{H}$ $=0.93-0.96 \AA$) and included in the refinement in the riding-model approximation, with $U_{\text {iso }}(\mathrm{H})=1.2$ or 1.5 times $U_{\text {eq }}(\mathrm{C})$. The H atoms of the hydroxy groups and water molecules were located in a difference Fourier map and were refined with distance restraints [$\mathrm{O}-$ $\mathrm{H}=0.85$ (1) \AA and $\mathrm{H} \cdots \mathrm{H}=1.39$ (1) $\AA]$; their displacement parameters were refined. The largest peak in the final difference Fourier map is about about $1 \AA$ from atom Mn1.

The structural components of (I), with displacement ellipsoids drawn at the 50% probability level and H atoms shown as spheres of arbitrary radii. The dashed lines represent hydrogen bonds. [Symmetry code: (i) $1-x, 1-y, 1-z]$.

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; method used to solve structure: atomic coordinates taken from the isostructural Cu analogue (Reinoso et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97.

The authors are grateful for grant No. IRPA 09-03-02-1021 and express thanks to Yunnan University and the University of Malaya for supporting this study.

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
Bruker (2004). APEX2 (Version 7.23A) and SAINT (Version 7.23A). Bruker AXS Inc., Madison, Wisconsin, USA.
Reinoso, S., Vitoria, P., San Felices, L., Lezama, L. \& Gutiérrez-Zorrilla, J. M. (2003). Acta Cryst. E59, m548-m550.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

